

TWO ISOFLAVONE GALACTOSIDES FROM *DALBERGIA SPINOSA*

VENKATESWARAN NARAYANAN* and NATESAN SHANMUGAN NAGARAJAN†

Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India

(Received 11 August 1987)

Key Word Index—*Dalbergia spinosa*; Leguminosae; leaves; prunetin 4'-*O*- β -D-galactoside; 7-methyltectorigenin 4'-*O*- β -D-galactoside; stem-bark; known isoflavones.

Abstract—The chemical examination of the leaves and stem-bark of *Dalbergia spinosa* has yielded, in addition to a number of known isoflavones, two new isoflavone galactosides, prunetin 4'-*O*- β -D-galactoside and 7-methyltectorigenin 4'-*O*- β -D-galactoside.

INTRODUCTION

Dalbergia spinosa is a stiff erect shrub with numerous short, round, horizontal branchlets ending in pungent spine, leaves crowded from the nodes of the branchlets and small whitish flowers [1]. The roots of *D. spinosa* when powdered and taken in water destroys the effect of alcohol [2]. The occurrence of isoflavonoids from the roots of *D. spinosa* has been reported earlier [3, 4]. In this study we have examined isoflavonoids of the hitherto unexamined leaves and stem-bark of *D. spinosa*.

RESULTS AND DISCUSSION

The benzene extract of the air-dried leaves of *D. spinosa* was column chromatographed over silica gel and yielded prunetin (5,4'-dihydroxy-7-methoxyisoflavone) and 7-methyltectorigenin (5,4'-dihydroxy-6,7-dimethoxyisoflavone) identified by their mp, UV, ¹H NMR and comparison with authentic samples. The benzene extract of the stem-bark on column chromatography over silica gel gave caviunin (5,7-dihydroxy, 6-2',4',5'-tetramethoxyisoflavone), dalspinin (5,7-dihydroxy-6-methoxy-3',4'-methylenedioxyisoflavone) [3] and dalbergin (6-hydroxy-7-methoxy-4-phenylcoumarin). The above compounds were identified by their mp, UV, ¹H NMR and by comparison with authentic samples. The alcoholic extract of the leaves of *D. spinosa* on column chromatography over silica gel gave an amorphous powder which was shown to contain two compounds with very close *R*_f values and they were resolved into pure compounds **1** and **2** by preparatory TLC.

Compound **1**, mp 182-184°, analysed for C₂₂H₂₂O₁₀, and appeared from colour reactions to be an isoflavone glycoside with a chelated hydroxyl group at C-5. The UV

spectrum had a strong absorption at 264 nm and shifted to 270 nm on the addition of AlCl₃ and AlCl₃-HCl and to 274 nm on addition of NaOEt. It did not show any shift with NaOAc and NaOAc-H₃BO₃ [5]. These observations indicated the presence of a free hydroxyl at C-5 and no free hydroxyl at C-7 of the isoflavone skeleton. Acid hydrolysis yielded prunetin and galactose. Permethylolation and subsequent hydrolysis of the permethylate of **1** by Hakomori's method [6] gave only 2,3,4,6-tetra-O-methyl-D-galactose thereby indicating the presence of only one galactose unit in the pyranose form. The glycosidic linkage of the galactoside was shown to be β -by the enzymatic hydrolysis of the compound using β -galactosidase. Hence **1** is prunetin 4'-*O*- β -D-galactopyranoside.

Compound (**2**), mp 171-173°, analysed for C₂₃H₂₄O₁₁ gave all the colour reactions give by **1**. The UV spectrum of **2** had its band at 270 nm which was bathochromically shifted only by AlCl₃ and AlCl₃-HCl to 276 nm and by NaOEt to 279 nm and not by any other diagnostic flavonoid shift reagents. On acid hydrolysis it gave 7-methyltectorigenin and galactose. Permethylolation and subsequent hydrolysis of the permethylate yielded only 2,3,4,6-tetra-O-methyl-D-galactose. It was also hydrolysed by β -galactosidase. Hence **2** is 7-methyltectorigenin 4'-*O*- β -D-galactopyranoside.

EXPERIMENTAL

Mps: uncorr. PC and TLC systems: (a) *n*-BuOH-HOAc-H₂O (4:1:5, upper), (b) PhOH-H₂O (satd), (c) *t*-BuOH-HOAc-H₂O (3:1:1), (d) EtOAc-Py-H₂O (10:4:3), (e) *n*-BuOH-EtOH-H₂O (4:1:1), (f) *n*-BuOH-EtOH-H₂O (5:1:4), (g) *n*-BuOH-EtOH-NH₃-H₂O (4:1:1:4.9), (h) C₆H₆-EtOAc (9:1), (i) C₆H₆-CHCl₃ (4:1) and (j) CHCl₃-MeOH (19:1). The TLC spots were visualized in UV light, by FeCl₃ spray or by exposure to I₂ vapours. Whatman No. 1 paper was used in PC and the spots were visualized by FeCl₃ or aniline hydrogen phthalate spray. For column chromatography, silica gel (60-120 mesh) and for TLC, silica gel G. Galactose was identified in acid

*Author to whom correspondence should be addressed.

†Present address: Department of Chemistry, Gandhigram Rural Institute, Gandhigram 624 302, India.

hydrolysates of **1** and **2** by chromatography and co-chromatography in solvents a-e.

The leaves and stem-bark of *D. spinosa* were collected from the Nagamalai Hills, near the Madurai Kamaraj University campus.

Extraction and isolation. The air-dried leaves (2.6 kg) were extracted with hot C₆H₆ and then with hot alcohol (6 × 6 hr). The benzene extract on concentration gave a semi-solid (3.0 g), which was chromatographed over a column of silica gel (100 g) in petrol (60–80°). The column was eluted with petrol, petrol-C₆H₆ mixtures with increasing amounts of C₆H₆, C₆H₆ and C₆H₆-CHCl₃ mixtures with increasing amounts of CHCl₃ and finally with CHCl₃. Fractions of 100 ml were collected each time, distilled and the homogeneity of the fractions was examined on silica gel TLC plates using systems h, i and j. Only fractions 50–88 and 106–134, both eluted with C₆H₆, gave solids prunetin (300 mg) and 7-methyltectorigenin (120 mg) respectively.

The alcoholic extract of the leaves on concentration gave a semi-solid (3.5 g) which was chromatographed over a column of silica gel (125 g) in CHCl₃ and eluted with CHCl₃ and CHCl₃-MeOH mixtures with increasing amounts of MeOH. Only fractions 72–89, eluted with CHCl₃-MeOH (47:3), left a colourless amorphous powder after the removal of the solvent. The amorphous powder (100 mg) when examined on silica gel TLC plates in the solvent system a was found to be a mixture of two entities with very close *R_f* values (0.87 and 0.84). The mixture was resolved into the individual pure components by preparatory TLC using the same solvent system.

The air-dried dark coloured stem-bark (2.5 kg) was extracted with hot C₆H₆ (6 × 6 hr). The C₆H₆ extract gave a semi-solid

(2.5 g) which was chromatographed over silica gel column built in petrol. Elution with pure as well as mixtures of the solvents in the order petrol (60–80°), C₆H₆ and EtOAc (4:1) yielded successively the known compounds in the order cavinunin (190 mg), dalspinin (95 mg) and dalbergin (35 mg).

Identification of the glycosides. **1** (40 mg), mp 182–84°, analysed for C₂₂H₂₂O₁₀ (Found: C, 59.4; H, 5.2. C₂₂H₂₂O₁₀ requires: C, 59.2; H, 4.9%), Compound **2** (45 mg), mp 171–173°, analysed for C₂₃H₂₄O₁₁ (Found: C, 57.7; H, 5.2. C₂₃H₂₄O₁₁ requires: C, 57.9; H, 5.0%).

Acknowledgements—The authors are grateful to Prof. S. Neelakantan, former Head of the Department of Natural Products Chemistry, Madurai Kamaraj University for helpful discussion, to USIC, Madurai Kamaraj University for spectral data and to Prof. T. J. Mabry for a sample of β -galactosidase.

REFERENCES

1. Hooker, J. D. (1951) *Flora of British India*, p. 238. L. Reeve, Kent, England.
2. Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) *Glossary of Indian Medicinal Plants*, p. 90. CSIR, New Delhi.
3. Gandhi Dasan, R., Nagarajan, N. S., Narayanan, V., Neelakantan, S. and Raman, P. V. (1982) *Indian J. Chem.* **21B**, 386.
4. Gandhi Dasan, R., Neelakantan, S. and Raman, P. V. (1985) *Indian J. Chem.* **24B**, 564.
5. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*, p. 41. Springer, Berlin.
6. Hakomori, S. (1964) *J. Biochem.* **55**, 205.